
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Implementing Windows Send/Post/
PeekMessage on a Macintosh

A cross platform chore without any fun at all
Michael Rutman <mailto://moose@manicmoose.com>

Why would I want to use
this scheme on a
Macintosh?
In our project, we had an existing

windows application we were porting to
the Macintosh. The choice was to either
rewrite the entire project, or to implement
the Windows message dispatch scheme on
the Macintosh.

It is hard to justify replacing the stand-
ard Macintosh inter application
communications with a Windows mecha-
nism, especially when our implementation
used AppleEvents as the underlying proto-
col. However, once the mechanism was
written, it did show a layer of simplicity
that I have never seen with raw
AppleEvents.

Sending a message to any window
only requires knowing one value, the win-
dow ID. If the window ID is known, then
any application can send a message to any
window anywhere on the system.

Creating a window
Creating a window does not mean

creating a Macintosh window. The window
created is only used as a communication
channel, not for displaying anything. One
of the annoying aspects of Windows pro-
gramming is the bluring of terminology. A
window under Windows may mean a
window on the screen, or it could just be a
loop waiting for a timer event.

Each window belongs to a class of
windows. Registering a class is as simple as

What is Send/Post/
PeekMessage?
On the Mac, the programmer writes a

single event-handling loop that dispatches
events to various parts of the program, such
as menu handlers, keyboard handlers, and
window handlers. In Windows, all event
handling is centered around the window.
Each event, called a message in Windows
terminology, goes through the message
handler. Window programmers, create an
event handler loop for every window. All
events, called messages under Windows, go
through the message handler for a window,
these include timer messages as well as
paint messages. PeekMessage is used to
grab the next message waiting for any
particular window.

Any window can handle messages. In
addition, any message can be sent to any
window, in either the same or a different
application. Each window is uniquly identi-
fied, therefore, the underlying OS can tell if
a message is being sent to the same applica-
tion, or a different application. All messages
are sent with either PostMessage or
SendMessage. PostMessage just puts the
message in the queue, SendMessage posts
the message, then blocks the windows
thread waiting for a response.

One ramification, even if you don’t
have a window visible, you still need to
have an invisible window to receive timer
and quit messages.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

filling in the fields of a structure and pass-
ing it to RegisterClass. Windows uses an
Application instance value, instead we used
the Macintosh’s process ID’s to specify
which application owned which window.

Each class also needs a unique class
name. In this case, we created an instance
variable, and set it to a constant string with
the process ID added on to the end. Later,
when the class needs to be unregistered, we
still have the string stored. As long as the
string is unique, it can be anything at all.
Using the process ID will insure that each
process will be able to register a window.

In addition, we extended the
WNDCLASS structure to allow registering
a Macintosh Event Handling interface and
some user data.

Messages will get dispatched to the
method specified in the lpfnWndProc field.
Each class has one handler, but the handler
can tell which window received the mes-
sage.

HINSTANCE hInstance = GetCurrentTask();
WNDCLASSwndclass;

MakeClassString(mWindowClass, kClassName
);
wndclass.style = 0;
wndclass.lpfnWndProc =
(WNDPROC)thisMessageHandler;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;
wndclass.hIcon = NULL;
wndclass.hCursor = NULL;
wndclass.hbrBackground = NULL;
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName =
(LPSTR)mWindowClass;
wndclass.eventCallback = HandleEvent;
wndclass.eventUserData = this;

RegisterClass(&wndclass);

Once a class is registered, then a window can be created with
the following call:

mWindowsWindow = CreateWindow(
(LPCSTR)mWindowClass,
(LPCSTR)"Client window", /* title */
WS_OVERLAPPEDWINDOW | WS_VSCROLL,

/* type */
15, 15, /* x,y */
40, 100,/* w,h */
(HWND)NULL, (HMENU)NULL,
hInstance, NULL);

Later, code for implementing these
routines will be discussed.

Window message
Dispatching
Despite the window class knowing the

routine for dispatching a message, there
still has to be a main message handler,
although, it is a simple routine.

if (PeekMessage (&msg, mWindowID, 0, 0,
PM_REMOVE))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

PeekMessage is a combination of
PeekEvent and WaitNextEvent. With the
PM_REMOVE flag, a message is copied and
removed from the queue. Without the
PM_REMOVE flag, a message is only cop-
ied, not removed.

TranslateMessage is used to convert
key values in key messages to the local
system. It handles dead keys and interna-
tional issues. The documentation makes it
clear that you should always call it before
dispatching a message.

DispatchMessage sends a message to
the correct dispatch handler, as specified
when the class was registered, in this case,
thisMessageHandler. There is one message
queue per application, so some process has
to pull messages off the queue and dispatch
them to the correct window. This includes
events not normally associated with a
display window.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Window Message Handler
DispatchMessage calls the handler,

thisMessageHandler, with a message for the
window. The handler is declared as

LRESULT CALLBACK DLL_API
thisMessageHandler (HWND hwnd, UINT msg,
WPARAM wParam, LPARAM lParam);

Neither the CALLBACK nor the
DLL_API keywords have any meaning, and
are #defined to nothing, The LRESULT is
defened to be a signed long. HWND is a
blind value representing the window ID,
msg is an enumeration of message types,
and wParam, a 16 bit (32 bits under Win32)
, and lParam, a 32 bit parameter. These are
defined by the msg type. It should be no-
ticed, each message can only pass 48 bits
(64 bits under Win32) of information with
it, and that may be a bit less than most
Macintosh programmers are used to.

The method itself is a switch statement
with each message type handled differently.
Simple ones, such as COMM_CLEANUP,
are only one call,
comm_server_cleanup((HTASK)wParam));
in this case. More complicated ones, such as
COMM_NET_ACTIVITY, get quite large
with subtypes of net activity and file
descriptors passed in.

Sending messages
While most messages are generated by

the system, there are times when one part
of an application, or another application,
needs to send a message to a particular
window. As long as the windows ID is
known, sending the message is as simple as
a single call. For example, in the Macintosh
winsock layer we created, we have the call:

PostMessage(
((ws_Endpoint_t *)contextPtr)->hwnd,
COMM_NET_ACTIVITY, FD_CONNECT,
(LPARAM)contextPtr);

 Now, the various parameters in this
PostMessage are application dependant,

but suffice it to say, the first parameter is
the window we are calling, the second is
the message type, the third is the wParam
and the fourth is the lParam. In this one
case, we had to change the API definition of
a message type. Under Windows, a commu-
nications endpoint is defined as a 16 bit file
identifier, on the Macintosh, it’s a 32 bit
pointer. The COMM_NET_ACTIVITY
message type defines the wParam as the file
descriptor, but that clearly would not work
on the Macintosh. As we are generating the
message as well as reading them, we were
able to change the definition in both places.

In the PostMessage case, the message is
added to the queue, and the application
continues on. Sometimes, a response is
required, and that’s what SendMessage is
for. The calling application will block until
the receiving app returns a 32 bit result.
Again, this limit may be a bit more than
Macintosh developers are used to.

Implementing windows
Again, we have a terminology prob-

lem. When I say implementing windows,
it’s a bit ambiguous which windows I
mean. In this case, I only mean implement-
ing the windows message system, not the
graphical windows, nor the entire Windows
OS.

An important issue is sharing memory.
Each application using the message queues
needs to share memory so they can access
the queues themselves. This, unfortunately,
put the queues in whatever heap was
launched first. One solution would be to
use an extension, but for this particular
project, that was neither required nor de-
sired.

Another important aspect is the
memory management. Some of the
PostMessages have to happen at interupt
time, and therefore, a memory scheme that
can be called at interupt time is vital. We
found that few structures need to be created
at interupt time, so we used OTAllocMem

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

for message queueing. It is very important
to not flood this. OTAllocMem will allocate
several K of memory, but not large quanti-
ties. Calls to the OTAllocMem family are
defined by amalloc, acalloc, afree, and so
on. All these calls are straightforward
memory allocation wrappers.

First, some data structures are needed
to handle the queues:

typedef struct _msg_t {
struct _msg_t *next;
struct _msg_t *prev;
MSG msg;

} msg_t;

typedef struct _wnd_t {
struct _wnd_t *next;
struct _wnd_t *prev;
void *class;
HWND wnd;
HTASK task; // this just makes it easier!

} wnd_t;

typedef struct _wnd_class_t {
struct _wnd_class_t *next;
struct _wnd_class_t *prev;
WNDCLASS wndclass;
wnd_t wnds;

} wnd_class_t;

MSG, HWND, HTASK, and
WNDCLASS are all standard Windows
structures. The above structures are used to
create a circular linked list of windows
structures. Static variables are defined to
head the queues.

static msg_t msgs = { &msgs,&msgs };
static wnd_class_t classes =

{&classes, &classes};
static HWND timer_wnd;
static TMTask timer_task;
Also, some accessor methods are used to make finding
particular windows and classes easier:
static wnd_class_t *find_class(

const char *class)
{

wnd_class_t *scan;

scan = classes.next;
while (scan != &classes) {

if (!strcmp(
scan->wndclass.lpszClassName,
class))

return(scan);
scan = scan->next;

}

return(NULL);
}

static wnd_class_t *find_class_by_task(
HTASK theTask)

{
wnd_class_t *scan;

scan = classes.next;
while (scan != &classes)

{
if (scan->wndclass.hInstance ==

theTask)
return(scan);

scan = scan->next;
}

return(NULL);
}

static wnd_t *find_wnd(HWND wnd)
{

wnd_class_t *scan_class;
wnd_t *scan;

scan_class = classes.next;
while (scan_class != &classes) {

scan = scan_class->wnds.next;
while (scan != &(scan_class->wnds)) {

if (wnd && scan->wnd == wnd)
return(scan);

scan = scan->next;
}
scan_class = scan_class->next;

}

return(NULL);
}

static wnd_class_t *find_class_from_wnd(
HWND wnd)

{
wnd_class_t *scan_class;
wnd_t *scan;

scan_class = classes.next;
while (scan_class != &classes) {

scan = scan_class->wnds.next;
while (scan != &(scan_class->wnds)) {

if (wnd && scan->wnd == wnd)
return(scan_class);

scan = scan->next;
}
scan_class = scan_class->next;

}

return(NULL);
}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

 The accessors are using a few of the
internal windows fields, but what they are
doing is pretty straight forward.

Two other utility functions, insque and
remque, are used to attach the different
structures together.

A few other utility methods are used to
convert Macintosh formats into Windows
formats. For example, Window’s tasks are
64 bit longs and Macintosh processes are a
64 bit structure; Macintosh ticks are 1/60 of
a second and Windows uses microseconds.
Those types of routines.

HTASK GetCurrentTask (void)
{

ProcessSerialNumber PSN;
HTASK task_id;

GetCurrentProcess (&PSN);
task_id = (PSN.highLongOfPSN << 32) +

PSN.lowLongOfPSN;
return task_id;

}
unsigned long GetCurrentTime(void)
{

return ((unsigned long)TickCount() *
1666)/100; // 16.66msecs/tick
}
The next chuck of code is the implementation of Register/
UnregisterClass
ATOM RegisterClass(

const WNDCLASS FAR*wndclass)
{

wnd_class_t *new;
ATOM retval = 0;

if (find_class(wndclass->lpszClassName)
== NULL) {

new = acalloc(1, sizeof(wnd_class_t));
if (new) {

memcpy(&(new->wndclass), wndclass,
sizeof(WNDCLASS));

new->wnds.next = &(new->wnds);
new->wnds.prev = &(new->wnds);
new->next = new;
new->prev = new;
insque((queue_node_t *)new,

(queue_node_t *)&classes);

retval = 1;
}

}

return(retval);
}

BOOL UnregisterClass(LPCSTR class,
HINSTANCE hinst)

{
wnd_class_t *scan;
BOOL retval = FALSE;

scan = find_class(class);
if (scan && scan->wnds.next ==

&(scan->wnds)) {
remque((queue_node_t *)scan);
afree(scan);

retval = TRUE;
}

return(retval);
}

The keyword ATOM is used to define
an atomic operation, one that no other
process can interupt. For once, we are fortu-
nate that the Macintosh uses a cooperative
multi-processing environment, and again,
ATOM is #defined out.

As well as registering classes, routines
for creating and destroying windows are
needed.

HWND CreateWindow(LPCSTR class,
LPCSTR name, DWORD style, int x, int y,
int w, int h, HWND parent, HMENU menu,
HINSTANCE hinst, void FAR* arg)

{
wnd_class_t *scan;
wnd_t *new;
HWND retval = NULL;

scan = find_class(class);
if (scan != NULL) {

new = amalloc(sizeof(wnd_t));
if (new) {

new->class = scan;
new->wnd = new;
new->task = GetCurrentTask();
new->next = new;
new->prev = new;
insque((queue_node_t *)new,

(queue_node_t *)&(scan->wnds));

retval = new->wnd;
}

}

return(retval);
}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

HWND DestroyWindow(HWND hWnd)
{

wnd_class_t *scan;
wnd_t *the_wind;
HWND retval = NULL;

the_wind = find_wnd(hWnd);
if (the_wind != NULL)

{
the_wind->next->prev = the_wind->prev;
the_wind->prev->next = the_wind->next;
afree(the_wind);
}

return(retval);
}

As the only use of our windows is a
communication channel, most of the pa-
rameters are ignored. In the example that
used them, real values were passed in, but
those came from the porting of Windows
code. The task is really the current process
id, and it is used to direct messages to the
correct application.

Implementing Post/
SendMessage
All messages sent have to be handled

either as an inter-application call, or a local
call. First, there is a very important rule
because a SendMessage call is always
blocking, never send a message to the
current application, only post. Fortunately,
Windows has to follow this rule also.

LRESULT SendMessage(HWND wnd,
wnd_msg_t msg, WPARAM wparam,
LPARAM lparam)

{
MSG theMsg;
BOOL retval = FALSE;
DWORD cur_time;

OSErr anErr;
Boolean isSame;
Size actualSize;
LRESULT AEresult = true;
DescType typeCode;
wnd_class_t *scan;

GetDateTime (&cur_time);
theMsg.hwnd = wnd;
theMsg.message = msg;
theMsg.wParam = wparam;
theMsg.lParam = lparam;
theMsg.time = cur_time;
theMsg.hInstance = GetCurrentTask();

scan = find_class_from_wnd(wnd);
if (GetCurrentTask() ==

scan->wndclass.hInstance)
return DoMessageNow(&theMsg);

else
return SendMessageByAE(&theMsg);

}

Basically, the message is placed inside a
message structure, then either immediately
executed, or sent to the other application.
The determination is made by comparing
the current task to the task saved when the
window was created.

Immediate execution is handled by
DoMessageNow

staticLRESULT DoMessageNow(const MSG *msg)
{

wnd_class_t *scan_class;
scan_class = find_class_from_wnd(

msg->hwnd);
if (scan_class &&

scan_class->wndclass.lpfnWndProc)
return

(scan_class->wndclass.lpfnWndProc)
(msg->hwnd, msg->message,
msg->wParam, msg->lParam);

}

The class of the window contains the
message handler, so a simple call to the
class accessor finds if there is a callback
routine. If there is a callback, the message is
dispatched.

If the message has to be dispatched to
another application is done by
SendMessageByAE

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

static LRESULT
SendMessageByAE(MSG *msg)
{

AppleEvent event, reply;
OSErr anErr;
AEAddressDesc procDesc;
Size actualSize;
LRESULT AEresult = true;
DescType typeCode;
ProcessSerialNumber psn;
wnd_t *scan;
long psn_part;

scan = find_wnd (msg->hwnd);
if (!scan)

return 0;

psn_part = (long)(scan->task>>32);
psn.highLongOfPSN = psn_part;
psn_part = (long)(scan->task &

0x00000000ffffffff);
psn.lowLongOfPSN = psn_part;
if (!psn.highLongOfPSN &&

!psn.lowLongOfPSN) {
DebugStr("\pCould not find process");
return 0;

}
anErr = AECreateDesc(

typeProcessSerialNumber, (Ptr)&psn,
sizeof(psn), &procDesc);

if (!anErr)
anErr = AECreateAppleEvent(kBGApp,

'Msg ', &procDesc,
kAutoGenerateReturnID,
kAnyTransactionID, &event);

if (!anErr)
anErr = AEPutParamPtr(&event, '----',

'Msg ', msg, sizeof(MSG));

if (!anErr)
anErr = AESend(&event, &reply,

kAECanInteract + kAECanSwitchLayer +
kAEWaitReply, kAENormalPriority,
kNoTimeOut, nil, nil);

if (!anErr)
{
anErr = AEGetParamPtr(&reply, '----',

'Rply', &typeCode, &AEresult,
sizeof(LRESULT), &actualSize);

if (anErr)
DebugStr("\pCould not get reply");

}

if (!anErr)
AEDisposeDesc(&event);

return AEresult;
}

 The process of the receiving applica-
tion is found, and an AppleEvent
containing a MSG structure is sent. The
receiving application is responsible for
processing the AppleEvent and generating
a return value. The sending application will
block, receiving no events, not even update
events.

PostMessage works with a different
mechanism. PostMessage can be called at
interupt time, when AppleEvents are not
allowed to be called. However,
PostMessage doesn’t block, and there is no
guarantee when the event will be proc-
essed. Therefore, we just put the posted
events in a queue using OpenTransport’s
interupt safe memory allocation routines.

BOOL PostMessage(HWND wnd, wnd_msg_t msg,
WPARAM wparam, LPARAM lparam)

{
msg_t *next_msg;
BOOLretval = FALSE;
DWORD cur_time;
wnd_t *scan;

next_msg = OTAllocMem(sizeof(msg_t));
if (next_msg) {

GetDateTime (&cur_time);
next_msg->msg.hwnd = wnd;
next_msg->msg.message = msg;
next_msg->msg.wParam = wparam;
next_msg->msg.lParam = lparam;
next_msg->msg.time = cur_time;
scan = find_wnd (wnd);
if (scan)

next_msg->msg.hInstance = scan->task;
else

next_msg->msg.hInstance =
GetCurrentTask();

next_msg->next = next_msg;
next_msg->prev = next_msg;
insque((queue_node_t *)next_msg,

(queue_node_t *)&msgs);
retval = TRUE;

}

return(retval);
}

To contrast the two, SendMessage has
to block until it returns, so it either short-
circuits the dispatch mechanism and
immediately calls its message handler, or it
sends an AppleEvent to the correct applica-

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

tion. PostMessage just takes the message,
adds it to the global message queue, and
continues on. PeekMessage will need to
handle both mechanisms for receiving
events.

Implementing
PeekMessage
First, PeekMessage checks to see if any

PostMessages have been put on the queue.
These usually come from interupts, and are
usually of high priority. If we have any
posted messages, they are always handled
first. This causes any sent messages to be
delayed, and also blocks the sender for
longer.

If no messages have been posted, the
next event is taken from the event queue
and handled, either as an AppleEvent, or
passed to the Macintosh Event Handler
registered with this class.

BOOL PeekMessage(MSG *msg, HWND wnd,
UINT start, UINT end, UINT action)

{
msg_t *next_msg;
BOOL retval = FALSE;
EventRecord event;
Boolean nullEvent;
HTASK thisProcess, msgProcess;
OSErr theErr;

thisProcess = GetCurrentTask();
next_msg = msgs.next;
while (next_msg != &msgs)

{
msgProcess = next_msg->msg.hInstance;
if ((thisProcess ==

next_msg->msg.hInstance) &&
((wnd == NULL) ||
(wnd == next_msg->msg.hwnd)))

{
memcpy(msg, &(next_msg->msg),

sizeof(MSG));
if (action == PM_REMOVE)

{
remque((queue_node_t *)next_msg);
OTFreeMem(next_msg);
}

retval = TRUE;
break;
}

next_msg = next_msg->next;
}

if (!retval)
{
wnd_class_t *theClass;
nullEvent = WaitNextEvent(everyEvent,

&event, kSleepValue, nil);
theClass = find_class_by_task(

GetCurrentTask());

if (theClass &&
(theClass->wndclass.eventCallback))

(*theClass->wndclass.eventCallback)
(&event, nullEvent,
theClass->wndclass.eventUserData);

else if (!nullEvent)
switch (event.what)

{
case kHighLevelEvent:

AEProcessAppleEvent(&event);
break;

case updateMask:
BeginUpdate(

(WindowPtr)event.message);
EndUpdate(

(WindowPtr)event.message);
break;

}
}

return(retval);
}

Only messages queued for this process
and for the window asked for are returned.
Passing a null value for window will return
any message for this process. If there is a
message waiting, it is returned with the
value of true.

If no message is queued up, then we
check for an event. As AppleEvents come
through the event queue, and there is no
easy way to get just AppleEvents without
throwing out other events, we have to grab
all events. If there is a registered callback,
then the event is passed to the callback,
otherwise, we check for AppleEvents and
update events. Update events have to be
handled minimally to clear the update
region, otherwise, the application will be
flooded with update events.

Handling the AppleEvent involves an
AppleEvent handler installed at application
initialization time:

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

AEInstallEventHandler(kBGApp, 'Msg ',
NewAEEventHandlerProc(MsgHandler), 0,
false);

and a message handler:
OSErr
MsgHandler(AppleEvent *event,

AppleEvent *reply, long refcon)
{

long theTickcount;
EventRecord anEvent;
MSG msg;
Size actualSize;
LRESULT result;
DescType typeCode;
OSErr anErr;

anErr = AEGetParamPtr(event, '----',
'Msg ', &typeCode, &msg, sizeof(MSG),
&actualSize);

if (actualSize != sizeof(MSG))
DebugStr("\pbad event came in");

if (!anErr)
result = DoMessageNow(&msg);

if (reply->descriptorType != 'null')
{
anErr = AEPutParamPtr(reply, '----',

'Rply', &result, sizeof(LRESULT));
if (anErr)

DebugStr("\pCould not make a reply");
}

return noErr;
}

The MsgHandler pulls a message
structure from the AppleEvent, calls
DoMessageNow, just like SendMessage
would have done with a local call, and puts
the return value in the reply field. If an
AppleEvent is received, a false is returned
from PeekMessage, meaning no more
processing is required.

Implementing the rest
Every PeekMessage should be in the

following loop:

if (PeekMessage (&msg, mWindowID, 0, 0,
PM_REMOVE))

{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

The TranslateMessage for our purposes
does nothing, and is implemented as:

BOOL TranslateMessage(const MSG *msg)
{

return(TRUE);
}

The DispatchMessage is also straight-
forward. It is only called when
PeekMessage has returned a message for
this process, and therefore, it only needs to
call DoMessageNow.

LRESULT DispatchMessage(const MSG *msg)
{

if (GetCurrentTask() == msg->hInstance)
DoMessageNow(msg);

else
DebugStr("\pDispatch should only have

gotten a same process message");
return 0;

}

A little debugging code is added for a
sanity check.

Conclusions
It was a lot of work to get the underly-

ing structure to work, but once done, a lot
of code was ported without many other
changes. For a small project, it would have
been a lot better to rewrite everything, but
for the project we did, it was well worth the
time to be able to port the Windows code
directly.

